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This technical annex provides details on the data-based modelling approach used in the 

study and guidance on how to interpret and apply them for predicting the potential 

distribution of aggregations of a species/life stage. 

A2.1 Decision tree modelling approach 

Decision tree models, specifically Classification trees, were calibrated to predict the 

presence/absence of aggregations of a species/life stage based on the associated 

environmental conditions.  

Classification trees are a type of supervised learning algorithm belonging to the CART family 

(Classification and Regression Trees) that allows the analysis of the relationship between 

one response variable (a categorical one in the specific case of classification trees) and 

several explanatory variables (Guisan et al. 2000, Faraway 2006, Zuur et al. 2007). They 

organise explanatory variables in a hierarchical way, based on their effect on the response 

variable, thus resulting in a tree-like structure (see section AX.3 for the structure and 

interpretation of decision trees).  

Compared to other classification approaches, decision trees closely mirror human decision-

making and have several advantages (De’ath and Fabricius 2000, Zuur et al., 2007). The 

hierarchical nature of the trees allows to identify the relative importance of different 

explanatory variables. They are similar to additive models in that they represent a 

compromise between the linear model and the completely nonparametric approach. In fact, 

they can accommodate the non-linearity and interaction between explanatory variables, as 

well as missing values (which may often been present for environmental variables in the 

datasets).  

A major advantage of decision trees is also that they are intuitively very easy to understand, 

and the resulting algorithm (i.e., the combination of environmental ranges that can be used 

to predict the occurrence of aggregations of a certain life stage) can be easily applied to a 

new environmental scenario to obtain predictions. As a result, they can be more easily 

communicated to a non-expert audience and used even without any technical expertise or 

statistical package needed. 

The model is calibrated by adjusting the selected mathematical model for the specific data 

on which the model is trained on (Guisan et al. 2000). In fact, the model does not need to be 

specified at the outset, as the true starting point is the algorithm created during the 

construction of the tree (Faraway 2006).  
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A2.2 Modelling protocol 

All analyses were conducted using R version 3.3.3 (R Core Team 2017) and the R-package 

“rpart” (Therneau et al. 2019). 

Fish survey and environmental data were combined into individual datasets for specific 

species/life stage, which including the presence/absence of aggregations (response variable) 

at individual survey events (e.g. haul) and the associated environmental conditions 

(explanatory variables) as extracted from environmental data layers. Each dataset was 

randomly divided into a train subset, including 80% of the data used for calibrating the 

model, and a test subset including the remaining data (20%) for model statistical validation 

(see assessment of model performance in Annex 3) 

Before modelling, a preliminary analysis of collinearity was undertaken to exclude 

redundant/collinear environmental variables. Collinearity occurs when there are high 

correlations among predictor variables, leading to unreliable and unstable estimates of the 

model parameters. Classification tree analysis only allows one of any set of correlated 

variables to enter the model at any given split (the variable that best classifies the data is 

selected). As the data are split into smaller groups throughout the modelling process, the 

relationships among explanatory variables may change, and this may affect the model 

results, thus justifying exclusion of highly correlated predictors (Lawler and Edwards 2002). 

A Variance Inflation Factor (VIF) <10 and/or Pearson’s correlation coefficient ≥0.8 were used 

as indicators of collinearity and the environmental variables were excluded from the 

analysis accordingly (Zuur et al. 2009). As a result, the following variables were excluded 

from the individual datasets: 

• Lesser sandeel: Depth (positively correlated with MLT); VegH01 was also excluded as 

all values were 0 in the dataset; 

• Anglerfish (juveniles): Substratum type (high VIF); 

• Cod, Haddock, Norway pout and Whiting (spawning): MLT (positively correlated with 

Depth). 

A model was calibrated on each train dataset by initially including all the environmental 

variables as potential predictors. Automatic selection procedures within the model 

algorithm allowed to identify the initial best model, i.e. based on a subset of explanatory 

variables that identify the parameters that best explain the variability in the fish data.  

Further model selection was undertaken through a combination of cross-validation 

(estimating the predictive ability of the model) and truncating in order to reduce the tree to 

a more ‘optimal’ number of terminal nodes as large tree can cause overfitting and may be 

more difficult to interpret (Faraway 2006). Specifically, “pruning” of the tree model was 

undertaken by applying the “one standard deviation (1-SE)” rule through examination of the 

Cp plot. Cp (the complexity parameter) controls the size of the tree (the latter decreases 

with increasing Cp). Pruning the tree (hence using a more simplified tree and higher Cp) 

usually increases the cross-validation prediction error, as shown in the Cp plot. An 



Developing Essential Fish Habitat maps for fish and shellfish species in Scotland 
Annex 2. Decision Tree Models 

Version 10 May 2022  |  Page 3 

acceptable compromise must be found between the level of pruning and the model error. 

The parsimonious “one standard deviation (1-SE)” rule allows the tree to be pruned to a 

maximum Cp value for which the resulting tree has a rate of error within one standard 

deviation of the minimum error (Faraway 2006, Zuur et al. 2007). Therefore, this rule allows 

simplifying the tree while maintaining an acceptable degree of error.  

Ten iterations of the Cp plot were undertaken and all the resulting models meeting the 1-SE 

rule were initially selected. The final best model was selected as the model that provided 

the best results on validation, i.e. the model with the best performance (highest F1 score; 

see assessment of model performance in Annex 3). 

A2.3 How to interpret and use decision trees 

A decision tree model is visually represented according to the tree structure in Figure A2.1. 

The decision tree starts from a root node that represents the full population of 

observations. This is divided through a series of splits into pairs of homogenous subsets of 

observations (sub-nodes) along a branch (i.e. a sub-section of the tree). Where a sub-node 

splits into further sub-nodes, this is called decision node. A node at the end of a branch and 

that does not split further is called terminal node (or leaf). 

 

Figure A2.1. Structure of a decision tree and its key elements. 
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In a Classification tree such as the one calibrated in this study, the root node is the full 

population of observations as classes of presence/absence of aggregations. Recursive binary 

splitting is applied at the root node and then at each of the decision nodes to grow the tree. 

Each split is defined based on alternative conditions for a specific environmental variable 

(e.g. < or ≥ of a certain value). The value indicated at the split on the tree (see for example 

classification tree for Plaice juvenile aggregations in Figure A2.2) represents the condition 

predicted along the branch on the left-hand side of the node (e.g. MLT ≥18.23 at the first 

split in Figure A2.2), whereas the alternative condition (e.g. MLT <18.23) is associated with 

the right-hand branch. As a result of the recursive splitting, a hierarchy can be established 

between the environmental predictors in the tree model, with those at the top being more 

important in affecting the response variable. Where the same predictor determines multiple 

splits along a branch, this indicates a non-linear effect of that variable on the prediction. 

 

Figure A2.2. Example of classification tree obtained for Plaice juvenile aggregations based on 
selected environmental predictors (MLT, thickness of the mixed layer (m); Dist, distance 
from the coast (m); Depth, water depth (m); SSS, sea surface salinity; CUR, current energy at 
the seabed (N/m2); NPPV, net primary production (carbon per unit volume of seawater); 
Substr, substrate type classified as a = Coarse substrate, b = Fine mud, c = Mixed sediment, d 
= Muddy sand, e = Sand, f = Sandy mud, and g = Sandy mud or Muddy sand). 
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The resulting predicted class (presence as 1 or absence 0) is shown at the leaf end of a 

branch (terminal node) and the combination of environmental criteria leading to that 

prediction is given by the conditions set along the branch. At the leaf prediction, the 

proportion of class observations in the training dataset that originate the leaf is also 

indicated (as number of absences/number of presences). This can be used to assess the 

probability of presence or absence predicted by the leaf.  

For example, the model in Figure A2.2 predicts absence of summer aggregations of juvenile 

Plaice where MLT ≥18.23 m, with 130 absence and 10 presence training observations 

included in that leaf prediction, suggesting that the absence class is predicted under those 

environmental conditions with 93% of success (i.e. 0.93 probability of absence 

=130/(130+10)), whereas the probability of presence of aggregations predicted in those 

conditions is 7% (10/(130+10) = 0.07).  

The same model predicts the presence of aggregations where MLT <18.23 m, the Substrate 

is Fine mud, Mixed sediment, Muddy sand or Sandy mud/ Muddy sand and the Distance 

from the coast is <10,970 m. Where all these conditions are satisfied, the presence is 

predicted with a 79% probability (22/(6+22)=0.79) while 21% of the observations were 

incorrectly classified by that leaf prediction. 

As each leaf prediction (as predicted class, presence or absence, and further qualified by the 

probability of the prediction) can be associated with a specific set of environmental criteria 

clearly defined by the model, its application does not require special expertise of statistical 

tools. Rather, it only requires that the environmental variables used as model predictors are 

estimated under the desired new scenario (a new area to be assessed, or an area where 

environmental conditions have changed, e.g. over the years, or are expected to change, e.g. 

due to climate change). Where the specific environmental criteria defined along different 

branches of the decision tree are met in the new scenario, the correspondent prediction of 

whether the habitat is potentially suitable to support aggregations of the species/life stage, 

and with which probability can be obtained. 

The model predictions (and the associated environmental criteria defined in the decision 

tree) need to be put into the context of the environmental variability represented in the 

data that were used to create the model (the environmental ranges associated with the 

survey data). For example, only sedimentary substrata were covered by the surveys that 

originated the model for juvenile Plaice in Figure A2.2, and the survey locations closest to 

the coast were at a distance of 744 m. Therefore, the model predictive ability is limited by 

these ranges, and any predictions outside them (e.g. for areas of hard substrata or closer to 

the coast) are not considered to be reliable.  
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