

Quantifying multi-scaled avoidance of five seabird species to offshore wind farms

Henrik Skov¹, Stefan Heinänen¹, Sara Méndez-Roldán², Tim Norman², Robin Ward², Ian Ellis²

¹ DHI, Agern Alle 5, 2970 Hørsholm, Denmark ² Niras Consulting Ltd, St. Giles Court, 24 Castle Street, Cambridge CB3 0AJ, United Kingdom

Quantifying multi-scaled avoidance of five seabird species to offshore wind farms

Presentation given by Robin Ward, NIRAS Consulting Ltd (rwa@niras.com) At ScotMER Symposium, 2nd October 2018

Introduction

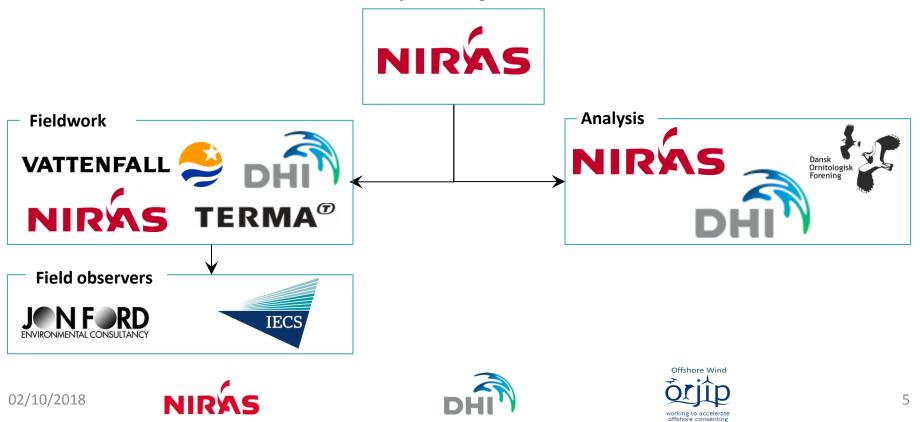
- The consenting process of offshore wind projects requires the identification, prediction and evaluation of the environmental effects of those proposed projects. In this context, the risk of birds colliding with turbine blades during operation is potentially one of the most significant environmental impacts predicted.
- In order to quantify bird collision risk, collision risk models (CRM) are used and parametrised with technical specifications of the turbines, bird densities, morphology and flight behaviour of existing bird populations present on site.
- The CRM e.g. the Band model (Band 2012), provides an estimate of the potential number of bird collisions likely to occur at a proposed wind farm assuming that birds take no action to avoid colliding with the wind turbines.
- In order to obtain realistic risk estimates, the collision risk modelling is subsequently corrected to take account of behavioural responses of birds to the presence of wind farms (i.e. avoidance).
- However, there is considerable uncertainty over the scale of such impacts due to the relatively few offshore monitoring studies so far undertaken, that have gathered empirical evidence.

Study aims

The ORJIP BCA study was designed to improve the evidence base for bird avoidance behaviour and collisions around offshore wind farms through the monitoring of seabird behaviour; and to support consenting applications for offshore wind development.

The three main aims of the project were:

- Aim 1 Development of a bird monitoring system, that allows detecting and tracking bird movements at the species level in and around an operational offshore wind farm.
- Aim 2 Deployment of a multiple sensor monitoring system to measure the level of bird behaviour at an offshore wind farm and provide robust evidence on the rates of avoidance and collision for several target species identified as being at risk from collision with offshore wind turbines.
- Aim 3 development of an appropriate methodology for quantifying empirical avoidance rates.



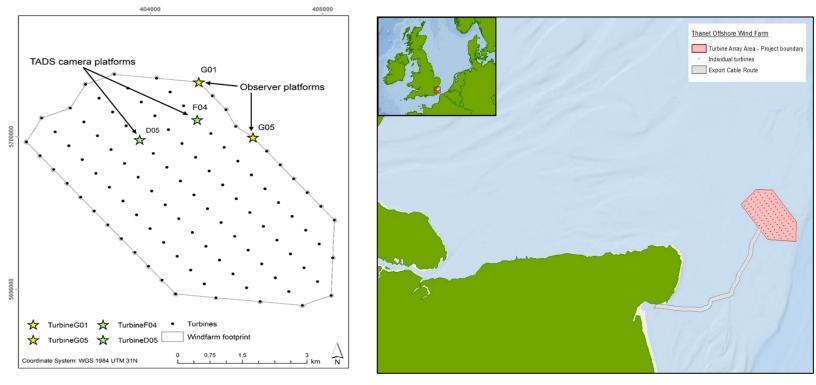
ORJIP: Bird Collision Avoidance Study

The Team

Project Management

Bird avoidance behaviour

The study's monitoring system was designed to collect reliable data on bird avoidance behaviour at the three different spatial scales into which bird avoidance behaviour can be broken down:


- **Macro avoidance** Bird behavioural responses to the presence of the wind farm occurring beyond its perimeter, resulting in a redistribution of birds inside and outside the wind farm. In this study, empirical macro avoidance is quantified up to 3 km outside the wind farm.
- **Meso avoidance -** Bird behavioural response within the wind farm footprint to individual turbines (considering a 10 m buffer around the rotor-swept zone) and resulting in a redistribution of the birds within the wind farm footprint.
- **Micro avoidance -** Bird behavioural response to single blade(s) within 10 m of the rotor-swept zone, considered as the bird's 'last-second action' taken to avoid collision.

Combination of observer-aided and automated tracking

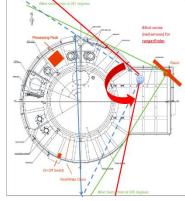
Five Priority Species

Northern Gannet

Herring Gull

Black-legged kittiwake

Lesser Blackbacked Gull

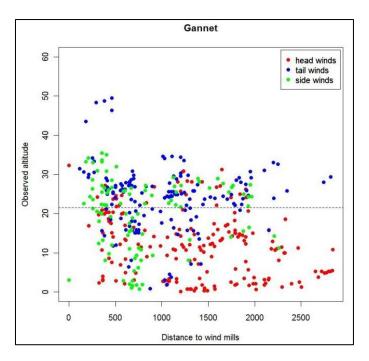


Great Blackbacked Gull

Observer-aided radar tracking

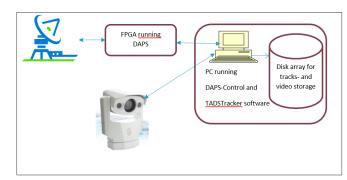
NIRAS

Observer-aided rangefinder tracking



Observer-aided tracking: technical and practical limitations

Weather-induced variability in bird flight behaviour


Source: Skov & Heinänen 2015; Predicting the weather-dependent collision risk for Birds at Wind Farms. Wind & Wildlife Proc. Springer

Science

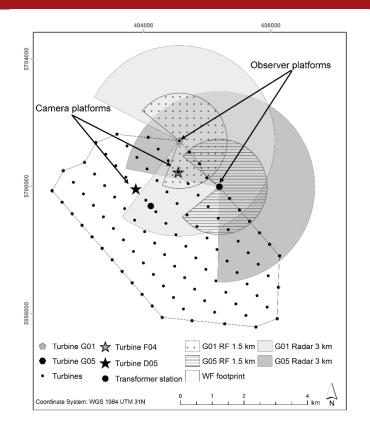
Offshore Wind

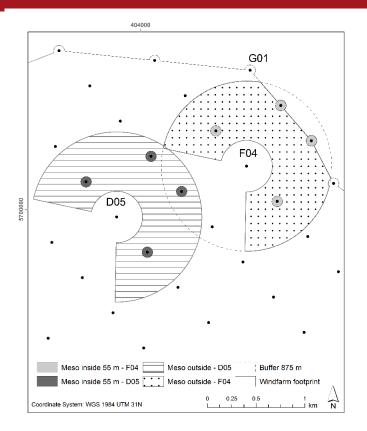
Development of radar-camera integration

MUSE (MUlti-SEnsor animal detection system):

High-speed signal processing

Embedded programming





Detection ranges

NIRAS

Sample sizes macro avoidance

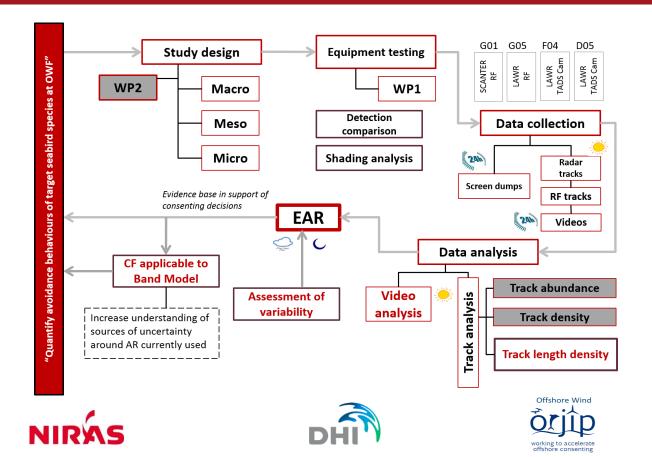
Number of radar and rangefinder tracks

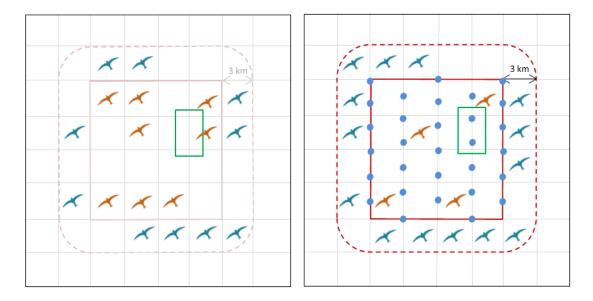
Species	Sample size
Northern Gannet	1,261
Black-legged Kittiwake	367
Great Black-backed Gull	533
Lesser Black-backed Gull	328
Herring Gull	460
Large gulls	1,323

Sample sizes meso avoidance

	Meso avoidance			
Species	Flies between turbines rows	Flies below rotor	Flies above rotor	
Northern Gannet	1,473	12	0	
Black-legged Kittiwake	203	2	0	
Great Black-backed Gull	292	2	0	
Lesser Black-backed Gull	51	0	0	
Lesser/Great Black-backed Gull	1,060	10	3	
Herring Gull	270	2	0	
Large gulls	4,143	33	7	
Small gull	419	0	0	
Gull unid.	3,254	6	2	
Seabird unid.	1,178	3	0 Offsh	

Sample sizes micro avoidance


	Adjusting					
Species	Turns before	Stops before	Crosses with	Not adjusting	Collision	Total
	crossing	crossing	adjustment			
Northern Gannet	4	0	28	1	0	33
Black-legged Kittiwake	0	1	4	0	1	6
Great Black-backed Gull	1	0	12	2	0	15
Lesser Black-backed Gull	0	0	1	0	0	1
Lesser/Great Black-backed Gull	6	0	15	1	1	23
Herring Gull	1	0	2	0	0	3
Large gull unid.	9	4	60	0	2	75
Small gull	1	1	3	1	0	6
Gull unid.	9	6	84	2	2	102
Seabird spp.	1	0	29	2	0	32
Other species of seabirds	0	0	2	0	0	4
All species of seabirds	32	12	240	9	6	299

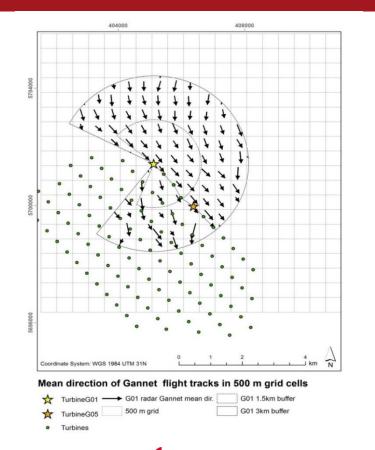


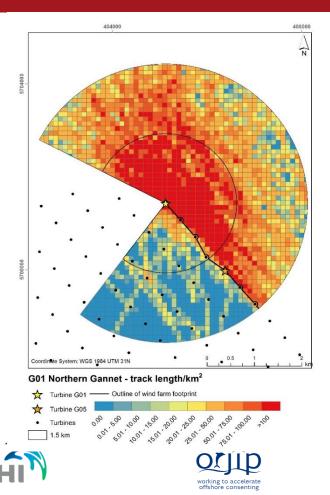
ORJIP analytical framework

ORJIP: Bird Collision Avoidance Study

Empirical macro avoidance

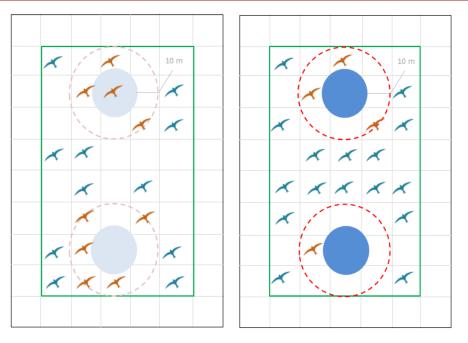
Overall Macro EAR = $1 - N_{in} / N_{ref}$



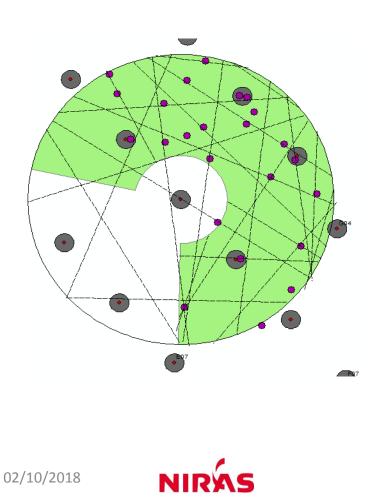


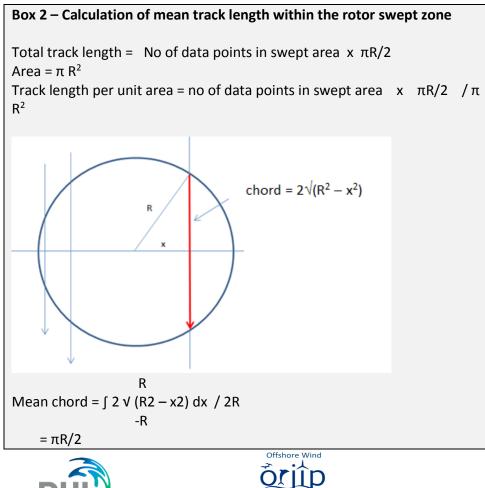
Empirical macro avoidance

Empirical macro avoidance


	Northern Gannet	Black- legged Kittiwake	Herring Gull	Great Black- backed Gull	Black-	All large gulls
Overall Macro EAR	0.797	0.566	0.422	0.464	0.619	0.481
SD	0.153	0.169	0.191	0.198	0.199	0.196

Empirical meso avoidance


Overall Meso EAR = $1 - N_{in} / N_{ref}$



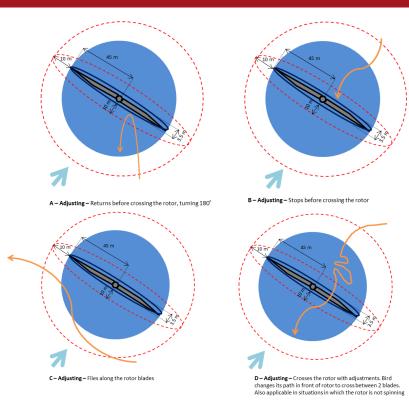
Calculation of mean track lengths in wind farm

vorking to accelerat

ORJIP: Bird Collision Avoidance Study

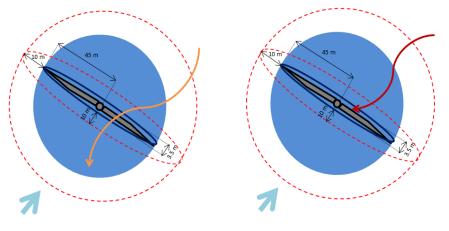
Empirical meso avoidance

MESO	Northern Gannet	Black-legged Kittiwake	Herring Gull	Great Black- backed Gull	Lesser Black- backed Gull	All large gulls
EAR	0.9205	0.9160	0.9134	0.9614	0.8937	0.8423
SD	0.174	0.177	0.173	0.174	0.175	0.177



ORJIP: Bird Collision Avoidance Study

Empirical micro avoidance



24

Empirical micro avoidance

E – Not Adjusting – Crosses the rotor without adjustments but survives

F – Collides

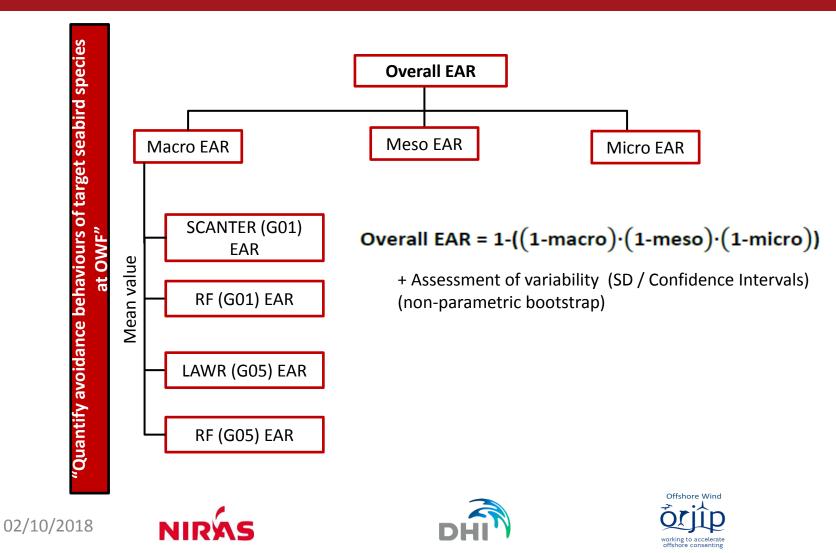
Overall micro EAR =

N birds adjusting flight

(N birds adjusting+N birds not adjusting+N birds colliding)

Empirical micro avoidance

MICRO	Large gulls	All seabirds
EAR	0.9565	0.9500
SD	0.115	0.115



Estimation of overall empirical avoidance

Overall empirical avoidance

Species	Current avoidance rates Basic model	Current avoidance rates Extended model	Study EARs	SD
Northern Gannet	0.989 (± 0.002)	Not available	0.999	0.003
Lesser Black- backed Gull	0.995 (± 0.001)	0.989 (± 0.002)	0.998	0.006
Herring Gull	0.995 (± 0.001)	0.990 (± 0.002)	0.999	0.005
Great Black- backed Gull	0.995 (± 0.001)	0.989 (± 0.002)	0.996	0.011
Black-legged Kittiwake	0.989 (± 0.002)	Not available	0.998	0.006

Species-specific mean flight speeds

Species	Flight speed commonly used (no. of tracks)	Flight speed estimated by this study (SD)
Northern Gannet	14.9* (32)	13.33 (4.24) [n=683]
Black-legged Kittiwake	13.1** (2)	8.71 (3.16) [n= 287]
Lesser Black-backed Gull	13.1** (11)	
Great Black-backed Gull	13.7** (4)	9.80 (3.63)*** [n=790]
Herring Gull	12.8** (18)	

* Pennycuick (1997)

**Alerstram et al. (2007)

***Estimated with data for all large gulls combined

Summary

The ORJIP study provided important and enhanced information for Band and other CRM:

- Empirical avoidance rates at 3 spatial scales for five species of seabirds
- Species-specific data on seabird flight speeds enable better estimation of fluxes
- Species-specific data on seabird flight heights enable better estimation of % at rotor height
- Data on nocturnal night activity of seabirds

The study collected the **most extensive dataset of observations of seabird behaviour** in and around an operational offshore wind farm currently available.

The study developed a **new sensor technology for automated monitoring** of bird behaviour at offshore wind farms

Summary

The ORJIP study provided important and enhanced information for Band and other CRM:

- Empirical avoidance rates at 3 spatial scales for five species of seabirds
- Species-specific data on seabird flight speeds enable better estimation of fluxes
- Species-specific data on seabird flight heights enable better estimation of % at rotor height
- Data on nocturnal night activity of seabirds

The study collected the **most extensive dataset of observations of seabird behaviour** in and around an operational offshore wind farm currently available.

The study developed a **new sensor technology for automated monitoring** of bird behaviour at offshore wind farms

Thank you for your attention

Bird Collision Avoidance Study

https://www.carbontrust.com/resources/reports/technology/bird-collisionavoidance/

Download the report:

Bird Collision Avoidance Study (PDF)

https://www.carbontrust.com/media/675793/orjip-bird-collision-avoidancestudy_april-2018.pdf

Infographic (PDF):

https://www.carbontrust.com/media/675801/orjip-bird-collision-avoidanceinfographic.pdf

