A SIMPLE MODEL USED TO ASSESS EFFECTIVENESS OF IPNV CONTROL STRATEGIES FOR SCOTTISH SALMON FARMS

Alexander Murray and Rob Raynard, FRS Marine Laboratory, Aberdeen UK

What is IPNV?

- Infectious Pancreatic Necrosis is disease of farmed fish, especially salmonids
- Caused by the aquabirnavirus IPNV
- IPNV is sometime found in wild fish (but not IPN)
- IPNV is spreading in range and becoming more common
- We present a model to describe spread in Scotland

Model Scenarios Predicting Effects of Interventions

- Marine transmission cut 50%
 - Control ineffective
- Source of smolt per marine farm cut from 3 to 1
 - Control ineffective
- Freshwater transmission cut 50%
 - Partially effective
- All 3 cuts
 - Effective control

Salmon production is increasing

Conclusion

- Simple model describes IPNV’s emergence
- Predicts prevalence equilibrates at 90% marine, 40-50% freshwater
- Improvements required everywhere for eradication

Model Approach

- SI Model \(I = \text{proportion farms infected}, \ S + I = 1 \)
- Freshwater and Marine Phases
- Marine farms receive fish from several freshwater farms, if any of these infected the marine farm is infected
- Transmission \(m_y \) \(\text{SI} \) \(m_y = \text{population factor} \)
- Infection remains until fish harvested

Freshwater model

\[
\begin{align*}
\frac{dS_f}{dt} &= s - m_y b_y S_f I_f - s S_f \\
\frac{dI_f}{dt} &= s - m_y b_y S_f I_f - s I_f
\end{align*}
\]

Marine model

\[
\begin{align*}
\frac{dS_m}{dt} &= h X - m_y b_m S_m I_m - h S_m \\
\frac{dI_m}{dt} &= h (1 - X) + m_y b_m S_m I_m - h I_m
\end{align*}
\]
