Just as human consumers of seafood contaminated with algal toxins are at risk of poisoning, other animals in marine food webs can be impacted by these toxins.

Previous research by scientists (in the USA1 and Canada2) has demonstrated that algal toxins can be ingested and pass through the digestive tract of cetaceans.

In November 2005, a Minke whale (Fig. 1) was stranded on the west coast of Scotland (Fig. 2). High cell densities of \textit{Pseudo-nitzschia} (>300,000 cells L-1) were recorded in coastal waters during the preceding September. Examination of the \textit{Pseudo-nitzschia} population using transmission electron microscopy (TEM) confirmed the presence of domoic acid (DA) producing \textit{P. cf. seriata} and \textit{P. cf. australis} (Fig. 3).

Using LC-MS, the algal toxin, DA (0.5 µg g-1) was detected in skin and blubber from the whale (Fig. 4). HPLC-UVDAD chromatograms suggested the presence of DA isomers.

Little is known about how algal toxins affect marine mammals.

Humans exposed to DA experienced nausea, vomiting, dizziness and confusion.

If Minke whales are as sensitive as humans to DA then they may also be likely victims of this toxin.