Detecting and tracking marine mammals around tidal turbines: development of a dual multibeam sonar system

Gordon Hastie, Pauline Jepp, Douglas Gillespie, Jamie Macaulay, Laura Palmer, Carol Sparling, and Mick Wu.
Thanks…

Scot. Govt. steering group: Elaine Tait (MSPaP), Paul Thompson (UoA), Kelly Macleod (JNCC), Janelle Braithwaite (MSPaP), Roger May (MSLOT), Ian Davies (MSS), Ross Culloch (MSS), John Armstrong (MSS), Jared Wilson (MSS), Ewan Edwards (MSS), Denise Risch (SAMS), George Lees (SNH), Erica Knott (SNH), Chris Eastham (SNH), Karen Hall (SNH), Cara Donovan (Atlantis), Daniel Coles (Atlantis), and Lily Burke (MSPaP);

Simon Moss, Steve Balfour, and Matt Bivins (SMRU);

Benjamin Williamson (ERI/UoA);

Fraser Johnson, Rowan Boswood, and Lorna Slater (Atlantis);
Energetic habitats: important for tidal turbines and seals
Tools to measure underwater behaviour

Passive acoustic tracking

Animal borne tags/telemetry

Active acoustic tracking
Tracking marine mammals with sonar: the process

- Sonar data
- Detect moving targets
- Track moving targets
- Classify marine mammals
 - Sonar development
 - Track marine mammals around turbine
Sonar data

Tritech Gemini: 720 kHz multibeam

No measured responses to signals by seals

Existing target tracking module

Detection probability (seals) >0.95 up to 30m
Detect and track targets
Detect and track targets – 3D
Detect and track targets – 3D
Detect and track targets – 3D

Mean absolute error: 2.16 m (95% CIs = 2.01 – 2.32)

Classify marine mammals
Classify marine mammals

Mobile targets in tidally energetic environments

- 95 targets.hr\(^{-1}\)
 - 6.6 seals.hr\(^{-1}\)
 - 88.8 non-seals.hr\(^{-1}\)
- Each day = ~2,100 non-seal targets;
- Need an effective means of data reduction.

kernel Support Vector Machines

The objective is to train a classification model based on labelled data. The trained model is then used for classifying novel data.
Kernel support vector machines

Used for a wide range of pattern recognition applications in biology

- Quantifying movement behaviour of cheetahs from GPS tags;
- Constructing social networks based on co-occurrences of jackdaws;
- Counting individual wildebeest within aerial survey photo;
- Classify seals in sonar data?
Kernel support vector machines
Kernel support vector machines

- All seals correctly classified;
- Majority of non-seals correctly classified;
- ~8% of non-seals classified as seals.

From: ~89 false positive detections/hour
To: ~8 false positive detections/hour

Seal tracking with sonar:

Summary

Sonar data

Detect moving targets

Track moving targets

Classify marine mammals

Track marine mammals around turbine

- Sonar is suitable for detecting wild seals in tidally energetic habitat;
- Development of 3D tracking appeared promising;
- Errors in depth estimation ~2m;
- kSVM appear to be good classification approach for seals in sonar data;
- All seals correctly classified;
- ~8% false positive rate.

Photo: Atlantis Resources Ltd
Next steps: redeployment around operating turbine...